翻訳と辞書
Words near each other
・ Naomikong Point Site
・ Naomine Iwaya
・ Naomori
・ Naondo Nakamura
・ Naongashing 31A, Ontario
・ Naonobu (crater)
・ Naonori Kohira
・ Naoomal Jeoomal
・ Naor
・ Naor Abudi
・ Naor Dahan
・ Naor Gilon
・ Naor Peser
・ Naor Zion
・ Naor's Friends
Naor-Reingold Pseudorandom Function
・ Naorem James Singh
・ Naoriya Pakhanglakpa
・ Naoroji Furdunji
・ Naos
・ Naos (shrine)
・ Naosap Lake
・ Naosap Mud Lake
・ Naosara
・ Naoshi
・ Naoshi Fukushima
・ Naoshi Komi
・ Naoshi Koriyama
・ Naoshi Mizuta
・ Naoshi Nakamura


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Naor-Reingold Pseudorandom Function : ウィキペディア英語版
Naor-Reingold Pseudorandom Function
In 1997, Moni Naor and Omer Reingold described efficient constructions for various cryptographic primitives in private key as well as public-key cryptography. Their result is the construction of an efficient pseudorandom function. Let ''p'' and ''l'' be prime numbers with ''l'' |''p''-1. Select an element ''g'' ∈ ^
* of multiplicative order ''l''. Then for each n-dimensional vector ''a'' = (''a''''1'', ..., ''a''''n'')∈ (\mathbb F_)^ they define the function
:f_(x) = g^} a_^^ \in \mathbb F_p
where x = x''1'' ... x''n'' is the bit representation of integer x, 0 ≤ x ≤ 2n-1, with some extra leading zeros if necessary.〔
==Example==

Let ''p'' = 7, ''p'' – 1 = 6, and ''l'' = 3, ''l'' |''p''-1. Select ''g'' = 4 ∈ ^
* of multiplicative order 3 (since 43 = 64 ≡ 1 mod 7). For n = 3, a = (1, 2, 1) and x = 5 (the bit representation of 5 is 101), we can compute f_\;(5) as follows:
:f_(x) = g^} a_^^
:f_(5) = 4^ 1^} = 4^ = 4 \in \mathbb F_7

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Naor-Reingold Pseudorandom Function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.